final report

June 6, 2024 Revised December 18, 2024

Traffic Impact Study

Kentucky Tennis and Pickleball Center Trevilian Way Louisville, KY

Prepared for

Louisville Metro Planning Commission

Table of Contents

INTRODUCTION	2
Figure 1. Site Map	2
EXISTING CONDITIONS	2
Figure 2. Existing Peak Hour Volumes	3
FUTURE CONDITIONS	3
Figure 3. No Build Peak Hour Volumes	4
TRIP GENERATION	4
Table 1. Peak Hour Trips Generated by Site	5
Figure 4. Trip Distribution Percentages	5
Figure 5. Peak Hour Trips Generated by Site	6
Figure 6. Build Peak Hour Volumes	7
ANALYSIS	7
Table 2. Peak Hour Level of Service	8
ZOO STRESS TEST	8
Figure 7. Zoo Stress Test Hourly Volumes	9
Table 3. Zoo Stress Test Hour Level of Service	9
CONCLUSIONS	10
ADDENDIV	11

INTRODUCTION

The Kentucky Tennis and Pickleball Center is proposed on the site of the current Louisville Tennis Center between Trevilian Way and Sheridan Avenue in Louisville, KY. The new center shows 36 tennis courts and 18 pickleball courts with both indoor and outdoor courts. **Figure 1** displays a map of the site. Access to the center will be from entrances on Trevilian Way and Sheridan Avenue. The purpose of this study is to examine the traffic impacts of the development upon the adjacent highway system. For this study, the impact area was defined to be the intersections of Trevilian Way with the zoo entrances. The new center entrances on Trevilian Way will mirror the access to the zoo.

Figure 1. Site Map

EXISTING CONDITIONS

Trevilian Way is a Metro Louisville maintained road with an estimated 2024 ADT volume of 4,100 vehicles per day east of the zoo exit, as estimated from the turning movement count and the K factor of 16.8 from the Kentucky Transportation Cabinet count station 939. Metro Public Works classifies the road as a minor arterial. The road on either side of the zoo access is two lanes with ten-foot lanes and a one-foot shoulder. Between the roundabouts, the road has 16-foot lanes and curbs. The speed limit is 35 mph. There is a continuous sidewalk on the south side and a multi-use path on the north side that connects to the intersection of Sheridan Avenue and Illinois Avenue. The intersections with the zoo access are controlled with a roundabout at each.

Page 2

Peak hour traffic counts for the intersections were obtained on April 9, 2024. The a.m. peak hour occurred at 7:15 to 8:15 and the p.m. peak hour occurred at 4:30 to 5:30. **Figure 2** illustrates the existing a.m. and p.m. peak hour traffic volumes.

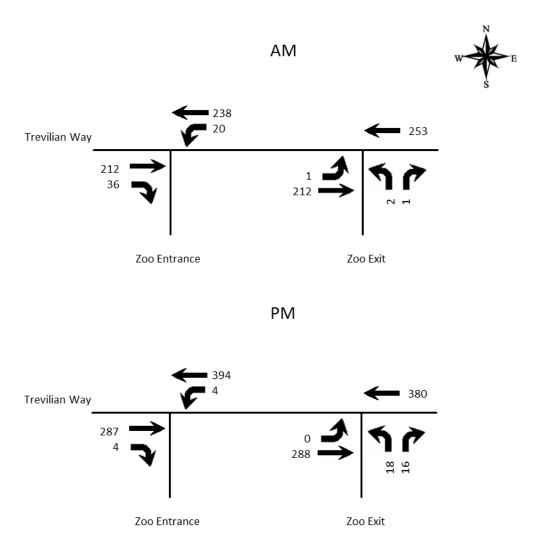
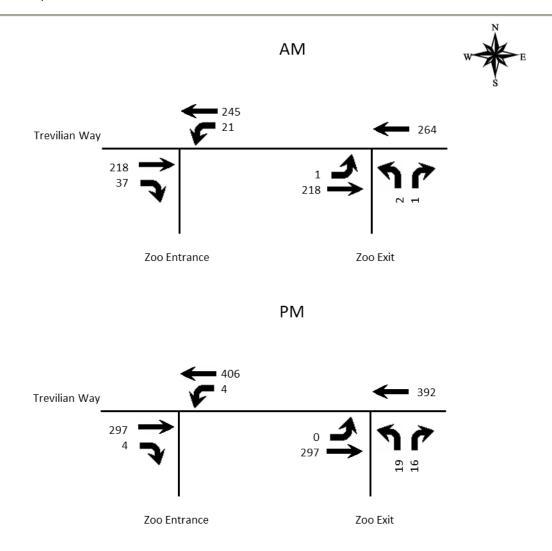
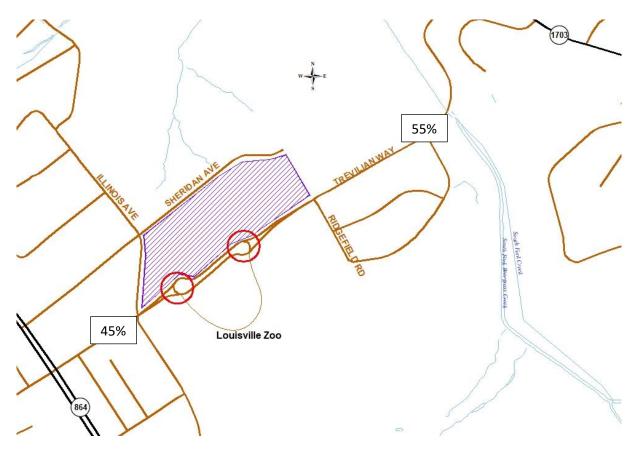


Figure 2. Existing Peak Hour Volumes

FUTURE CONDITIONS

The project completion date is 2027. An annual growth rate of 1.0 percent was applied to all volumes. **Figure 3** displays the 2027 No Build peak hour volumes.




Figure 3. No Build Peak Hour Volumes

TRIP GENERATION

The Institute of Transportation Engineers <u>Trip Generation Manual</u>, 11th Edition contains trip generation rates for a wide range of development, however nothing like what is proposed. The trip generation is estimated from the operator for the anticipated daily use and is listed in **Table 1**. In addition to the courts, the facility will offer a training facility and a restaurant. The trips were assigned to the highway network with the percentages shown in **Figure 4**. These percentages are reflective of the peak hour traffic flow on Trevilian Way. **Figure 5** shows the trips generated by this development and distributed throughout the road network during the peak hours. **Figure 6** displays the individual turning movements for the peak hours when the development is completed.

Table 1. Peak Hour Trips Generated by Site

	A.M.	Peak I	lour	P.M. Peak Hour						
Land Use	Trips	In	Out	Trips	In	Out				
Tennis Center	189	114	75	196	119	77				

Figure 4. Trip Distribution Percentages

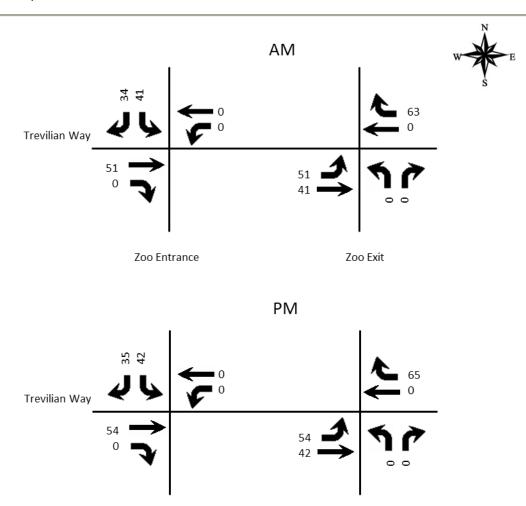


Figure 5. Peak Hour Trips Generated by Site

Zoo Exit

Zoo Entrance

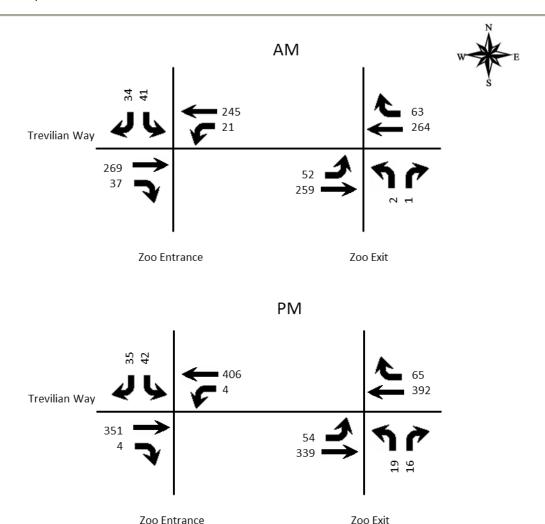


Figure 6. Build Peak Hour Volumes

ANALYSIS

The qualitative measure of operation for a roadway facility or intersection is evaluated by assigning a "Level of Service". Level of Service is a ranking scale from A through F, "A" is the best operating condition and "F" is the worst. Level of Service results depend upon the facility that is analyzed. In this case, the Level of Service is based upon the average delay experienced at an intersection.

To evaluate the impact of the proposed development, the vehicle delays at the intersections were determined using procedures detailed in the <u>Highway Capacity Manual</u>, 7th edition. Future delays and Level of Service were determined for the intersections using the HCS Streets (version 2024) software. The delays and Level of Service are summarized in **Table 2**.

Table 2. Peak Hour Level of Service

		A.M.			P.M.	
Approach	2024	2027	2027	2024	2027	2027
Арргоасп	Existing	No Build	Build	Existing	No Build	Build
	Α	Α	Α	Α	Α	Α
Trevilian Way at Zoo Entrance	4.1	4.1	4.4	5.0	5.1	5.3
Trevilian Way Eastbound	Α	Α	Α	Α	Α	Α
Trevillari Way Lastbourid	3.6	3.7	4.4	4.5	4.6	5.3
Travilian Way Weethound	Α	Α	Α	Α	Α	Α
Trevilian Way Westbound	4.5	4.6	4.6	5.4	5.5	5.5
			Α			Α
Tennis Center exit Southbound			3.7			4.2
	Α	Α	Α	Α	Α	Α
Trevilian Way at Zoo Exit	4.4	4.4	4.4	5.0	5.0	5.4
	Α	Α	Α	Α	Α	Α
Trevilian Way Eastbound	4.2	4.2	4.4	4.5	4.6	5.3
Travilian Way Weathound	Α	Α	Α	Α	Α	Α
Trevilian Way Westbound	4.5	4.6	4.6	5.4	5.5	5.5
Zoo exit Northbound	Α	Α	Α	Α	Α	Α
200 exit Northbourid	3.2	3.2	3.7	3.5	3.5	3.9

Key: Level of Service, Delay in seconds per vehicle

The entrance was evaluated for turn lanes using the Kentucky Transportation Cabinet <u>Highway Design Guidance</u> <u>Manual</u> dated July, 2020. Using the volumes in Figure 6, the warrant for a right turn lane is not satisfied at the entrance.

ZOO STRESS TEST

At the request of the Louisville Zoo, a stress test of the intersections was conducted using data provided by the Louisville Zoo. The attendance for a busy day without a special event was selected. The daily attendance of 7,729 visitors was selected. The zoo estimates the average occupancy is 3.05 persons per vehicle. The zoo also provided hourly estimates of arriving and departing visitors. These calculations result in the highest hour of arriving and departing vehicles is 12:00 to 1:00 p.m. with 633 arriving vehicles and 253 departing vehicles. These trips were assigned to the zoo access with 60 percent from Poplar Level Road and 40 percent from Newburg Road.

For the through volume on Trevillian Way 150 vehicles per hour will be used in each direction. For the tennis center, a Saturday or Sunday during the summer is estimated to have 86 arriving vehicles and 77 departing vehicles. **Figure 7** displays the turning movements for the hour of 12:00 to 1:00 pm. **Table 3** displays the capacity results. The full printouts are included in the appendix.

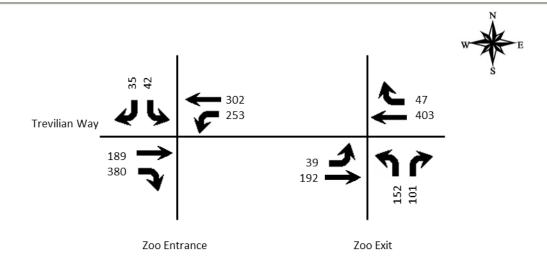


Figure 7. Zoo Stress Test Hourly Volumes

Table 3. Zoo Stress Test Hour Level of Service

Approach	2027
Арргоасп	12:00
	Α
Trevilian Way at Zoo Entrance	4.3
Trevilian Way Eastbound	Α
Trevillari way Lasibouriu	1.8
Trevilian Way Westbound	Α
Trevillari way westboaria	6.7
	Α
Tennis Center exit Southbound	4.8
	Α
Trevilian Way at Zoo Exit	5.4
	Α
Trevilian Way Eastbound	4.1
Travilian Way Westbound	Α
Trevilian Way Westbound	6.7
Zoo exit Northbound	Α
200 exit Nottibourid	4.2

Key: Level of Service, Delay in seconds per vehicle

Kentucky Tennis and Pickleball Center Trevilian Way Traffic Impact Study

CONCLUSIONS

Based upon the volume of traffic generated by the development and the amount of traffic forecasted for the year 2027, there will be a manageable impact to the existing highway network, with Levels of Service remaining within acceptable limits.

Page 10

APPENDIX

Traffic Counts Marr Traffic Classified Turn Movement Count | | All vehicles Louisville, KY www.marrtraffic.com (1) Site 1 Date Weather Tuesday, April 9, 2024 Cloudy 63°F Trevilian Way (West) Lat/Long Click here for Detailed Weather Trevilian Way (East) 38.207088°, -85.709636° Click here for Map 0 0700 - 0900 (Weekday 2h Session) (04-09-2024) All vehicles Westbound Trevilian Way (West) Driveway Trevilian Way (East Thru Right App Left Thru App Int TIME 1.2 1.3 Tota 1.5 1.6 Total Tota 0700 - 0715 39 0 0 0 33 0 33 72 0715 - 0730 54 2 0 56 59 0 60 116 0730 - 0745 67 4 0 71 0 76 0 76 147 0745 - 0800 48 17 0 65 11 56 0 67 132 Hourly Total 208 23 0 231 12 224 0 236 467 12 7 55 54 0800 - 0815 43 0 8 47 0 55 110 54 47 0815 - 0830 0 56 110 7 56 42 0 49 57 0830 - 0845 1 0 106 51 8 40 0 59 0 0845 - 0900 46 105 Hourly Total 183 34 0 217 16 197 214 431 Grand Total 391 57 0 28 421 1 450 898 448 Approach % 87.28 12.72 0.00 6.22 93.56 0.22 43.54 6.35 0.00 49.89 3.12 46.88 0.11 50.11 Heavy Vehicle % 5 2 0 3 0 3 2 0.00 0.87 0.79 0.51 0.45 0.78 0.86 PHF 0.00 0.85 1600 - 1800 (Weekday 2h Session) (04-09-2024) All vehicles Northbound Westbound Driveway Trevilian Way (West) Thru U-Turn Left Thru U-Turn Int 1.2 1.3 Total 1.4 1.6 Total Total 1600 - 1615 70 1 1 72 0 65 66 138 1615 - 1630 46 2 0 48 0 78 0 78 126 1630 - 1645 80 1 0 81 2 84 0 86 167 99 1645 - 1700 63 0 0 65 100 165 259 6 326 266 330 596 Hourly Total 1 3 1 97 175 1700 - 1715 77 1 0 78 0 97 0 67 0 0 108 1715 - 1730 67 1 0 109 176 1730 - 1745 0 73 91 0 72 1 2 93 166 61 0 63 105 107 170

To determine the p.m. peak hour both intersections were treated as a single intersection with a total p.m. peak hour volume of 705 vehicles.

4

10

547

1.09 98.78

0.62 56.66

0.63 0.93

0.18

0.08 42.63

> 0 1 0

0.00 0.90

536 10

97.99 1.83

41.78 0.78

0.90 0.50

Hourly Total

Grand Total

Approach %

Intersection %

Heavy Vehicle %

PHF

Page 12

0 406

0.08 57.37

0.00 0.93

0.14

0 2

736

687 1283

1

0.98

www.marrtraffic.com

Site 2
Driveway

Date
Tuesday, April 9, 2024

Weather Cloudy 63°F

Click here for Detailed Weather

Trevilian Way (West) Trevilian Way (East) Lat/Long 38.208106°, -85.707669° Click here for Map

0700 - 0900 (Weekday 2h Session) (04-09-2024)

All vehicles

Louisville, KY

		Northbound	
		Driveway	
	Left	Right	App
TIME	2.1	2.2	Total
0700 - 0715	1	0	1
0715 - 0730	0	0	0
0730 - 0745	0	1	1
0745 - 0800	1	0	1
Hourly Total	2	1	3
0800 - 0815	1	0	1
0815 - 0830	0	0	0
0830 - 0845	3	2	5
0845 - 0900	5	4	9
Hourly Total	9	6	15
Grand Total	11	7	18
Approach %	61.11	38.89	-
Intersection %	1.30	0.83	2.13
Heavy Vehicle %	18	0	11
PHF	0.50	0.25	0.75

Eastbour	nd	Westbound	i	
Trevilian Way	(West)	Trevilian Way (East)	
Thru	U-Turn App	Thru	U-Turn App	Int
2.3	2.4 Total	2.5	2.6 Tota	I Total
40	0 40	33	0 33	74
53	0 53	58	0 58	111
62	1 63	77	0 77	141
55	0 55	64	0 64	120
210	1 211	232	0 232	446
42	0 42	54	0 54	97
49	0 49	56	0 56	105
41	0 41	52	0 52	98
51	0 51	41	0 41	101
183	0 183	203	0 203	401
393	1 394	435	0 435	847
99.75	0.25 -	100.00	0.00 -	
46.40	0.12 46.52	51.36	0.00 51.3	ô
2	0 2	3	- 3	2
0.85	0.25 0.85	0.82	0.00 0.82	0.83
		_		

1600 - 1800 (Weekday 2h Session) (04-09-2024)

All vehicles

		Northbound	
		Driveway	
	Left	Right	App
TIME	2.1	2.2	Total
1600 - 1615	5	1	6
1615 - 1630	3	3	6
1630 - 1645	5	4	9
1645 - 1700	4	5	9
Hourly Total	17	13	30
1700 - 1715	4	6	10
1715 - 1730	5	1	6
1730 - 1745	2	2	4
1745 - 1800	4	5	9
Hourly Total	15	14	29
Grand Total	32	27	59
Approach %	54.24	45.76	-
Intersection %	2.47	2.08	4.55
Heavy Vehicle %	3	0	2
		<u> </u>	
PHF	0.90	0.67	0.85
		<u> </u>	

Eastbound				Westbound			
Trevilian Way (We	est)		Tre	evilian Way (Ea	st)		
Thru	U-Turn	App	Thru		U-Turn	App	Int
2.3	2.4	Total	2.5		2.6	Total	Total
68	0	68	63		0	63	137
45	0	45	76		0	76	127
77	0	77	81		0	81	167
68	0	68	95		0	95	172
258	0	258	315		0	315	603
77	0	77	93		0	93	180
66	0	66	111		0	111	183
71	0	71	86		0	86	161
61	1	62	100		0	100	171
275	1	276	390		0	390	695
				<u>-</u> '			
533	1	534	705		0	705	1298
99.81	0.19	-	100.00		0.00	-	
41.06	0.08	41.14	54.31		0.00	54.31	
1	0	1	2		-	2	1
<u> </u>				-			
0.94	0.00	0.94	0.86		0.00	0.86	0.96
<u></u>				•			

HCS Reports

				HC	S Rou	ndab	out	s Rep	ort									
General Information			_			$\overline{}$	_	Inform		n								
Analyst	DBZ								Inters	Intersection					Way at Zo	o Ent		
Agency or Co.	Diane	B. Zimm	ermai	n Traffic		-			E/W S	E/W Street Name					Trevillian Way			
Date Performed	5/13/2	024							N/S S	treet Nar	ne		Zoo Ent					
Analysis Year	2024				▼ ↓	*		1)	Analy	sis Time I	Period,	0.25						
Time Analyzed	AM Pe	ak								Hour Fact	tor		0.86					
Project Description	Tennis	Center							Juriso	liction								
					100								_					
Volume Adjustments	and S	ite Ch	arac	teristic	:s								_					
Approach	Щ,	EE	3		<u> </u>	WB				N	В			_	SB			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	_	L T	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	0		0 0	0		
Lane Assignment	<u> </u>			T				LT										
Volume (V), veh/h	0		212	36	0	20	238			Ш				\perp	\perp	\perp		
Percent Heavy Vehicles, %	0		1	0	0	0	2							\perp		\perp		
Flow Rate (v=ct), pc/h	0		249	42	0	23	282											
Right-Turn Bypass		Non-Yi	elding	9		Non	e			No	ne				None			
Conflicting Lanes		1				1												
Pedestrians Crossing, p/h	g, p/h 0					0												
Proportion of CAVs, %									0									
Critical and Follow-U	р Неа	dway	Adjı	ustmen	t													
Approach		EE	3			WB				N	В				SB			
Lane	Left	Rig	ht	Bypass	Left	Righ	nt	Bypass	Left	ft Right B		Bypass	ass Left		Right	Bypas		
Critical Headway, s		4.97	63			4.976	53											
Follow-Up Headway, s		2.60	87															
Flow Computations,	Capaci	ty and	d v/e	c Ratio	5													
Approach	Т	EE	3			WB			NB						SB			
Lane	Left	Rig	ht	Bypass	Left	Righ	nt	Bypass	Left	Left Right		Bypass	Le	eft	Right	Bypas		
Entry Flow (ve), pc/h		24	.9	42		305	7			\top	\neg		\Box	\neg				
Entry Volume, veh/h		24	.7	42		299	,				\neg							
Circulating Flow (v:), pc/h		23				0				24	9				305			
Exiting Flow (vex), pc/h		24	.9			282	2			0					23			
Capacity (cpos), pc/h		134	48			1380	οT			\top	\top			\neg				
Capacity (c), veh/h		133	35			1359	5				\neg							
v/c Ratio (x)		0.1	8			0.22	2			\top	\neg			\neg				
Delay and Level of Se	ervice																	
Approach		\neg		EB		$\overline{}$		WB			NB		Т		SB			
Lane		\neg	Left	Right	Bypass	Left	:	Right	Bypass	Left	Righ	t Byp	ass	Left	Right	Bypas		
		\neg		4.2				4.5					\neg					
Lane Control Delay (d), s/veh		$\overline{}$		A	А		\top	А					\dashv					
Lane Control Delay (d), s/veh												_	-		_	-		
		\dashv		0.7			\neg	0.8								1		
Lane LOS		_		0.7			\perp	0.8 20.0					+					

				HC	S Rou	ndab	oout	ts Rep	oort										
General Information						$\overline{}$		Infor		n									
Analyst	DBZ								Inter	section			Т	revillia	n Way a	at Zoo	Ent		
Agency or Co.	Diane	B. Zimr	merma	n Traffic					E/W	E/W Street Name					Trevillian Way				
Date Performed	6/6/2	024				100		1.	N/S S	N/S Street Name					Zoo Ent				
Analysis Year	2027				T	WA	9	1	Analy	sis Time	Period,	hrs	0	0.25					
Time Analyzed	AM Pe	eak No	Build		F/ .	S Committee	A		Peak	Hour Fac	tor		0	0.86					
Project Description	Tennis	Center	,			V			Juriso	diction									
Volume Adjustments	and S	ite Cl	hara	teristi	cs														
Approach			EB			WE	В			N	В				SE	3			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	Т	R I	u	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	T	0	•	0	0	0		
Lane Assignment				Т				LT											
Volume (V), veh/h	0		218	37	0	21	245					Т	\neg	Т			Т		
Percent Heavy Vehicles, %	0		1	0	0	0	2						\neg	\neg					
Flow Rate (vect), pc/h	0		256	43	0	24	291					Т	\neg	\dashv	\neg		\top		
Right-Turn Bypass		Non-	rielding	9			No	ne				No	ne						
Conflicting Lanes			1			1							\neg						
Pedestrians Crossing, p/h	h 0					0													
Proportion of CAVs, %									0										
Critical and Follow-U	p Hea	dway	Δdi	ustmer	nt														
Approach			EB		. <u> </u>	WE			_	N			$\overline{}$		SE	,			
Lane	Left	_	ight	Bypass	Left	Righ	_	Bypass	Loft	NB Left Right Byr			ass Left		_	Right Byp			
Critical Headway, s	Leit	_	763	руразз	Derc	4.97	\rightarrow	руразз	Leit	nt Right		-,,,		LEIL	lug	-	Бураз		
Follow-Up Headway, s		-	5087			-	\rightarrow			_	\dashv		+			\dashv			
		_		2.6087							_		_		_	_			
Flow Computations,	Capaci			c Katio	S 				_				_						
Approach		_	EB			WE	_		-	N	_	3			SE	_			
Lane	Left	_	ight	Bypass	Left	Rigi	\rightarrow	Bypass	Left	Rig	ht	Вура	iss	Left	Rig	ht	Bypas		
Entry Flow (ve), pc/h		2	56	43		319	5		_	\perp			\perp		_	4			
Entry Volume, veh/h		2	53	43		309	9		_				\perp						
Circulating Flow (v:), pc/h			24			0			_	25	6		\perp		31	5			
Exiting Flow (vex), pc/h		. 2	56			29	1)		\perp		24	1			
Capacity (cpoe), pc/h		11	347			138	0						\perp			_			
Capacity (c), veh/h		1:	333			135	55												
v/c Ratio (x)		0	.19			0.2	3												
Delay and Level of Se	rvice																		
Approach				EB		Т		WB			NE	3				SB			
Lane			Left	Right	Bypass	s Lef	ft	Right	Bypass	Left	Rigi	ht	Bypass	Lef	t R	ight	Bypas		
Lane Control Delay (d), s/veh				4.3			\top	4.6				\top							
Lane LOS				А	A		\top	А				\dashv			\top				
95% Queue Length, Q ₅₅ (veh)				0.7			+	0.9				\top			+				
3370 Queue Length, Q55 (Ven)	0.7			+	+	+	\rightarrow			-	+			_					
95% Queue Length, Q ₃₅ (ft)																			
			3	17.6	A	+	4.6	22.5	A		Щ					Т			

				HC:	S Roui	ndab	out	s Rep	ort											
General Information						9	Site	Infor	matio	n										
Analyst	DBZ					U LA			Inters	ection			T	Trevillian Way at Zoo Ent						
Agency or Co.	Diane	B. Zimr	nermar	n Traffic	Á	-			E/W	W Street Name					Trevillian Way					
Date Performed	6/6/2	024			N/S S						/S Street Name 2					Zoo Ent				
Analysis Year	2027				Analy											0.25				
Time Analyzed	AM P	eak Build	d			Peak	Hour Fac	tor		-	0.86									
Project Description	Tennis	s Center				$\vec{}$	1		Juriso	liction										
Volume Adjustments	and S	ite Cl	narac	teristic	s															
Approach		E	EB			WB				N	В		\neg			SB				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	Τ	R	U	L	Т	R			
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	T	0	0	1	0	1			
Lane Assignment				T		\neg	ı	.T						Ĺ			R			
Volume (V), veh/h	0		269	37	0	21	245					Τ	\neg	0	41		34			
Percent Heavy Vehicles, %	0		1	0	0	0	2					T	\neg	3	0		0			
Flow Rate (v=c1), pc/h	0		316	43	0	24	291					Т	\neg	•	48		40			
Right-Turn Bypass		Non-Y	rielding			None	•			No	ne		\neg		N	one				
Conflicting Lanes			1			1							\neg	1						
Pedestrians Crossing, p/h			0			0									0					
Proportion of CAVs, %									0											
Critical and Follow-Up	Hea	dwav	Adi	ustmen	t															
		,																		
Approach	EB					\A/P				N			$\overline{}$			C D				
Approach	Laft	_	_	Runaee	Laft	WB	.	Runsee	laft	N Ric	_	Byen	200	Laft	_	SB ight	Runass			
Lane	Left	Ri	ght	Bypass	Left	Right	+	Bypass	Left	_	_	Вур	_	Left	R	ight	Bypass			
Lane Critical Headway, s	Left	Ri 4.9	ght 9763	Bypass	Left	Right 4.976	3	Bypass	Left	_	_	Вур	4	.5436	R 4.	ight 5436	Bypas			
Lane Critical Headway, s Follow-Up Headway, s		4.9 2.6	ght 9763 6087			Right	3	Bypass	Left	_	_	Вур	4		R 4.	ight	Bypass			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C		2.6 ity an	ght 9763 6087			Right 4.976 2.608	3	Bypass	Left	Rig	pht	Вур	4	.5436	R 4.3	ight 5436 5352	Bypas			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach	Capaci	2.6 ity an	ght 9763 6087 ed v/e	Ratios	1	4.976 2.608 WB	7			Rig	ght B		2	.5436 5352	R 4.1	ight 5436 5352 SB				
Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane		2.6 2.6 1ty an	ght 9763 6087 6d v/c EB	Ratios Bypass		Right 4.976 2.608 WB Right	3 7	Bypass	Left	Rig	ght B	Вур	2	.5436 .5352 Left	R 4.9 2.9 R	5436 5352 SB				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach	Capaci	Ri 4.9 2.6	ght 0763 6087 6d v/6 EB ght 16	Bypass 43	1	Right 4.976 2.608 WB Right 315	3 7			Rig	ght B		2	.5436 .5352 Left 48	R 4.3	ight 5436 5352 SB ight 40				
Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane	Capaci	Ri 4.9 2.6 ity an 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ght 9763 6087 6d v/c EB ght 16	Ratios Bypass	1	Right 4.976 2.608 WB Right	3 7			Rig	ght B		2	.5436 .5352 Left	R 4.3	5436 5352 SB				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h	Capaci	Ri 4.9 2.6 ity an 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ght 0763 6087 6d v/6 EB ght 16	Bypass 43	1	Right 4.976 2.608 WB Right 315	3 7			Rig	B pht		2	.5436 .5352 Left 48	R 4.9 2.9 2.9 R	ight 5436 5352 SB ight 40				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h	Capaci	Ri 4.9 2.6 Ri Ri 3 3 3	ght 9763 6087 6d v/c EB ght 16	Bypass 43	1	Right 4.976 2.608 WB Right 315 309	3 7			N Rig	B ght		2	.5436 .5352 Left 48	R 4.9	ight 5436 5352 SB ight 40 40				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h	Capaci	Ri 4.9 2.6 ity an E Ri 3 3 3	ght 1763 6087 6087 608 608 608 608 608 608 608 608 608 608	Bypass 43	1	Right 4.976 2.608 WB Right 315 309 0	3 7 7 t			N Rig	B ght		ass	.5436 .5352 Left 48	R 4.1	ight 5436 5352 SB ight 40 40 315				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (w), pc/h	Capaci	Ri 4.9 2.6 ity an E Ri 3 3 3 7 3 12	ght 1763 6087 16 v/c 16 16 172 164	Bypass 43	1	Right 4.976 2.608 WB Right 315 309 0	3 7 7 t			N Rig	B ght		ass	.5436 .5352 Left 48	R 4.3	ight 5436 5352 SB ight 40 40 815 24	Bypass			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w.), pc/h Exiting Flow (v.o.), pc/h Capacity (cpoo), pc/h	Capaci	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 9763 8087 8 8 9 9 1 1 1 1 3 1 7 2 1 6 4 2 8 2	Bypass 43	1	Right 4.976 2.608 WB Right 315 309 0 331 1380	3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			N Rig	B ght		ass	.5436 .5352 Left 48 48	R 4. 4. 2. 2. 1	sB ight 40 40 815 24 0666				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (v _*), pc/h Entry Volume, veh/h Circulating Flow (v _*), pc/h Exiting Flow (v _*), pc/h Capacity (c _{poo}), pc/h Capacity (c _{poo}), veh/h	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	1763 16087 16087 16087 16087 16087 1708 1708 1708 1708 1708 1708 1708 1	Bypass 43	1	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355	3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			N Rig	B ght		ass	.5436 .5352 Left 48 48	R 4. 4. 2. 2. 1 1 1 1 1 1 1	sB ight 40 40 315 24 066 066				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (w), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x)	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	1763 16087 16087 16087 16087 16087 1708 1708 1708 1708 1708 1708 1708 1	Bypass 43	1	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355	3 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			N Rig	B ght	Вур	ass	.5436 .5352 Left 48 48	R 4. 4. 2. 2. 1 1 1 1 1 1 1	sB ight 40 40 315 24 066 066				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (cpo), pc/h V/c Ratio (x) Delay and Level of Ser	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	1763 16087 16087 16087 16087 16087 1708 1708 1708 1708 1708 1708 1708 1	Bypass 43 43	1	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355 0.23	3 7 7 T T T T T T T T T T T T T T T T T	Bypass		N Rig	B B IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Вур	ass	.5436 .5352 Left 48 48 1066 1066	R 4. 4. 2. 2. 1 1 1 1 1 1 1	ight 5436 55352 558 558 558 558 558 558 558 558 558 5				
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (wo), pc/h Capacity (cpoo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Set Approach	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 1763 1763 1763 1763 1764 176	Bypass 43 43	Left	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355 0.23	3 7 7 tt	Bypass	Left	N Rig	B B I I I I I I I I I I I I I I I I I I	Вур	ass	.5436 .5352 Left 48 48 1066 1066	R R R R	ight 5436 5436 55352 558 558 558 558 558 558 558 558 558 5	Bypas			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (w), pc/h Capacity (cpo), pc/h Capacity (cpo), pc/h V/c Ratio (x) Delay and Level of Set Approach Lane	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 1763 1763 1763 1763 1764 176	EB Right	Left	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355 0.23	3 7 7 tt	Bypass WB Right	Left	N Rig	B B I I I I I I I I I I I I I I I I I I	Вур	ass	Left 48 48 1066 1066 3.	R R R R	ight	Bypas			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpoo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Sel Approach Lane Lane Control Delay (d), s/veh	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 1763 1763 1763 1763 1764 176	Bypass 43 43 EB Right 5.0	Left	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355 0.23	3 7 7 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bypass WB Right 4.6	Left	N Rig	B B I I I I I I I I I I I I I I I I I I	Вур	ass	.5436 .5352 Left 48 48 1066 0.05	R R R R R R R R R R R R R R R R R R R	ight 5436 5352 558 558 659 659 659 659 659 659 659 659 659 659	Bypas			
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, C Approach Lane Entry Flow (w), pc/h Entry Volume, veh/h Circulating Flow (w), pc/h Exiting Flow (vo), pc/h Capacity (coo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Sel Approach Lane Lane Control Delay (d), s/veh Lane LOS	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 1763 1763 1763 1763 1764 176	EB Right 5.0	Left	Right 4.976 2.608 WB Right 315 309 0 331 1380 1355 0.23	3 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bypass WB Right 4.6	Left	N Rig	B B I I I I I I I I I I I I I I I I I I	Вур	ass	Left 48 48 1066 0.05 Le 48 48 0.05	R R A	ight 5436 5436 55352 558 558 558 558 558 558 558 558 558 5	Bypas			

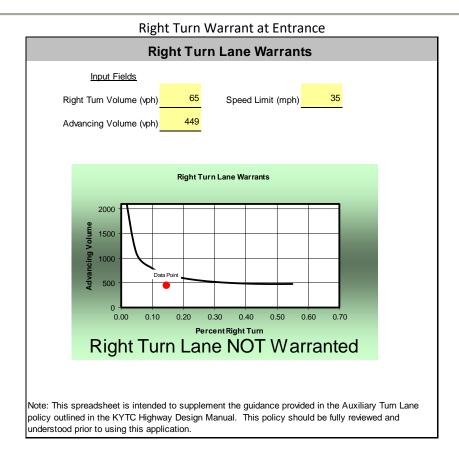
				HC	S Rou	ndal	bοι	ıts Re	port										
General Information							Site	e Infor	matio	n									
Analyst	DBZ						1		Inter	ection			Tr	evilliar	n Way a	t Zoo	Ent		
Agency or Co.	Diane	B. Zimi	merma	n Traffic				À.	E/W	E/W Street Name					Trevillian Way				
Date Performed	5/13/2	2024					-		N/S S	N/S Street Name					Zoo Ent				
Analysis Year	2024				4 1		D	1	Analy	Analysis Time Period, hrs					0.25				
Time Analyzed	PM Pe	eak			17		-		Peak	Hour Fac	tor		0.	0.95					
Project Description	Tennis	Center	,						Juriso	diction									
Volume Adjustments	and S	ite Cl	harad	teristi	cs														
Approach			EB			W	/B		Т	N	В		\top		SB				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	- 1	J	L	Т	R		
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	7	7	0	0	0		
Lane Assignment				T				LT											
Volume (V), veh/h	0		287	4	0	4	394	.				Т	\top	Т	\neg		Т		
Percent Heavy Vehicles, %	0		2	0	0	0	2							\top					
Flow Rate (v=ct), pc/h	0		308	4	0	4	423		-	\Box		Т	\top	\top	\neg		\top		
Right-Turn Bypass		Non-	,		No	ne			No	ne		\top		Non	e	_			
Conflicting Lanes			1			-	1						\top						
Pedestrians Crossing, p/h			0			(0						+						
Proportion of CAVs, %									0										
Critical and Follow-U	. U.s.	duran	Λdi	ıetmaı															
	JIICA			ustillei	T	14	·		_				_						
Approach .		_	EB			W Si		_		NB					SB Left Right				
Lane	Left	_	ight	Bypass	Left	_	ght	Bypass	Left	t Right		Bypass		Left	Rigi	nt	Bypas		
Critical Headway, s		+	763		4.976				-	+			+			+			
Follow-Up Headway, s		_	5087			2.6087													
Flow Computations, C	Capaci	ity an	d v/	c Ratio	s														
Approach		-	EB			W				NB					SB				
Lane	Left	Ri	ight	Bypass	Left	Rig	ght	Bypass	Left	Rig	ht	Bypass		Left	Righ	nt	Bypas		
Entry Flow (ve), pc/h		3	:08	4		42	27												
Entry Volume, veh/h		3	02	4		41	19				\neg		\top			T			
Circulating Flow (vc), pc/h			4				0			30	8		\top		427	7			
Exiting Flow (vex), pc/h		3	:08			42	23			C)		\top		4				
Capacity (cpoe), pc/h		1:	374			13	80			\top	\neg		\top			Т			
Capacity (c), veh/h		1:	347			13	53				\top					\neg			
v/c Ratio (x)		0	.22			0.3	31				\top					\neg			
Delay and Level of Se	rvice																		
Approach				EB		т		WB			NB				9	B B			
Lane			Left	Righ	t Bypas	s Le	eft	Right	Bypass	Left	Righ	nt B	ypass	Left	Ri	ght	Bypas		
Lane Control Delay (d), s/veh				4.6			\dashv	5.4											
				A	A			A				+							
Lane LOS				_	+	+	-	1.3				+			+				
	0.9				- 1										1				
95% Queue Length, Q ₃₅ (veh)				_		+		32.5				+							
			.4	22.9	A		5.4	32.5	A		H								

				HC	S Rou	ındal	bou	ıts Re	port								
General Information									matio	n		_					
Analyst	DBZ						WI		Inter	section			Tr	revilliar	n Way a	t Zoo	Ent
Agency or Co.	Diane	B. Zimr	nerma	n Traffic					E/W	Street Na	me		Tr	revilliar	n Way		
Date Performed	6/6/20	24						1	N/S	treet Na	me		Z	oo Ent			
Analysis Year	2027				 		Ð	1	Analy	sis Time	Period,	hrs	0.	.25			
Time Analyzed	PM Pe	ak No B	Build		F4	and the same	-		Peak	Hour Fac	tor		0.	.95			
Project Description	Tennis	Center						7	Juriso	diction							
Volume Adjustments	and S	ite Cl	narac	teristic	cs												
Approach		E	В			W	/B		Т	N	В		\Box		SE	:	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	F	R L	J	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	1	0 0	•	0	0	0
Lane Assignment				Т				LT									
Volume (V), veh/h	0		297	4	0	4	406	<u> </u>				Т	\neg	П			Т
Percent Heavy Vehicles, %	0		2	0	0	0	2										
Flow Rate (v=ct), pc/h	0		319	4	0	4	436	-				\top	\top	\top	\neg		\top
Right-Turn Bypass		Non-Y	rielding	,		No	ne			No	ne				Nor	ne	
Conflicting Lanes			1			1	1						\neg				
Pedestrians Crossing, p/h			0			()										
Proportion of CAVs, %									0								
Critical and Follow-U	p Head	0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0															
Approach		-	B			W	/B		Т	N	В		\top		SE		
Lane	Left	Ri	ght	Bypass	Left	Rig	ght	Bypass	Left	Rig	ht	Вура	ess l	Left	Rig	ht	Bypas
Critical Headway, s		4.9	763			4.9	763			\top	\neg		\top			\neg	
Follow-Up Headway, s		2.6	087			2.60	087				\neg					\neg	
Flow Computations, C	Capaci	ty an	d v/	c Ratio	s												
Approach			B			W	/B		$\overline{}$	N	В		\top		SE	:	
Lane	Left	Ri	ght	Bypass	Left	Rig	ght	Bypass	Left	Rig	ht	Вура	ess l	Left	Rig	ht	Bypas
Entry Flow (ve), pc/h		3	19	4		44	10			\top	\neg		\top			\neg	
Entry Volume, veh/h		3	13	4		43	31				\neg					\dashv	
Circulating Flow (v.), pc/h			4				$\overline{}$			31	9		\top		44		
Exiting Flow (vex), pc/h		3	19			43	36			()		-		4		
Capacity (cpoe), pc/h		13	374			13	80			\top	Т		\top		П	Т	
Capacity (c), veh/h		1:	347			13	53			+	\dashv		-			\dashv	
v/c Ratio (x)		-	23			-	32				\dashv					+	
Delay and Level of Se	rvice					1			-	_							
Approach				EB		Т		WB			NE	3				SB	
Lane			Left	Right	Bypas	s Le	eft	Right	Bypass	Left	Rigi	ht	Bypass	Left	R	ight	Bypas
Lane Control Delay (d), s/veh				4.6	1		\dashv	5.5				+			+		
Lane LOS				А	A		\dashv	Α				+			+		
95% Queue Length, Q ₃₅ (veh)				0.9	+		\dashv	1.4				+			+		
95% Queue Length, Q ₅₅ (ft)				22.9			\dashv	35.0				+			+		
Approach Delay, s/veh LOS			Α	.6		+	5.5		A								
																1	

Agency or Co. Date Performed Analysis Year Time Analyzed	0 0 0 0	24 sk Build Center	arac 3 T	Traffic	S Rou	$\overline{}$	Site I	nform	Inters E/W S N/S S Analy Peak	n Street Nar Street Nar Street Nar Street Nar Hour Fact liction	ne Period,	hrs	т 2	revilliar revilliar oo Ent .25		Zoo	Ent
Agency or Co. Date Performed Analysis Year Time Analyzed Project Description Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wcr), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	Diane E 6/6/20/2 2027 PM Pea Tennis III U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 Sk Build Center EB	arac 3 T	teristic		WB)	E/W S N/S S Analy Peak	Street Nar Street Nar Sis Time I	ne Period,	hrs	т 2	oo Ent	n Way	Zoo	Ent
Date Performed Analysis Year Time Analyzed Project Description Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wct), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0 0 0 0	24 Sk Build Center EB	arac 3 T	teristic		WB			N/S S Analy Peak	treet Nar sis Time I	ne Period,	hrs	Z 0	00 Ent			
Analysis Year Time Analyzed Project Description Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (vcc), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	2027 PM Pea Tennis U 0 0 0 0	center te Cha	arac 3 T	R		WB			Analy Peak	sis Time I	Period,	hrs	0	.25			
Time Analyzed Project Description Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wci), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	PM Pea Tennis	Center te Cha	arac 3 T	R		WB	9)	<u> </u>	Peak	Hour Fac		hrs	_				
Project Description Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wcr), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	U 0 0 0 0 0	Center te Cha	arac 3 T	R		WB	1		_		tor		0	.95			
Volume Adjustments ar Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (vcc), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	U 0	te Cha	T 1	R		WB	1		Jurisd	liction			$\overline{}$				
Approach Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (vec), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	U 0 0 0 0 0 0	L	T 1	R		WB											
Movement Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wcr), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0 0 0	L	T 1	+	U	WB											
Number of Lanes (N) Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (wcr), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0 0 0	-	1	+	U		3			N	В				SB		
Lane Assignment Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (vcc), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0 0	0		0		L	т	R	U	L	Т	П	R I	u T	L	Т	R
Volume (V), veh/h Percent Heavy Vehicles, % Flow Rate (vect), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0		254	4	0	0	1	0	0	0	0	П	0	0	1	0	1
Percent Heavy Vehicles, % Flow Rate (wci), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0		254	Т		\neg	Ľ	т					\neg	L			R
Flow Rate (wcr), pc/h Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	0	耳	351	4	0	4	406					Г	\neg	0	42		35
Right-Turn Bypass Conflicting Lanes Pedestrians Crossing, p/h	-	\rightarrow	2	0	0	0	2					T		3	0		0
Conflicting Lanes Pedestrians Crossing, p/h		- 1	377	4	0	4	436					Т	—	0	44		37
Pedestrians Crossing, p/h		Non-Yie	elding			Non	ne .			No	ne				None	:	
		1				1							\neg		1		
Dranastian of CAVa 94		0				0									0		
Proportion of CAVS, 70																	
Critical and Follow-Up	Head	way i	Δdiu	ıstmen	t												
Approach		EE				WB	,			N			$\overline{}$		SB	_	
Lane	Left	Rigi	_	Bypass	Left	Righ	_	Sypass	Left	Rig	_	Вура		Left	Right	Т	Bypas
Critical Headway, s	Leit	4.97	\rightarrow	Буразз	Leit	4.976	_	уразз	Len	lug	-	Бурс	_	5436	4.543	-	Dypas
Follow-Up Headway, s		2.60	\rightarrow			2.608	\rightarrow			_	+		_	5352	2.535	+	
			_	D-4:-		2.000	,				_				2.333	-	
Flow Computations, Ca	apacıt			Katio	5								_				
Approach		EE	_			WB	_			N	_		+		SB	_	
Lane	Left	Rigi	\rightarrow	Bypass	Left	Righ	-	Sypass	Left	Rig	ht	Вура	ess	Left	Right	4	Bypas
Entry Flow (v _e), pc/h		37	7	4		440				_	_	_	+	44	37	4	
Entry Volume, veh/h		370	0	4		431	1						\perp	44	37	\perp	
Circulating Flow (vc), pc/h		48	3			0				42	1		\perp		440		
Exiting Flow (vex), pc/h		42	1			473	3			0			\perp		4	_	
Capacity (cpoe), pc/h		131	14			138	0			\perp	_		\perp	951	951	4	
Capacity (c), veh/h		128	38			135	3							951	951		
v/c Ratio (x)		0.2	9			0.32	2							0.05	0.04		
Delay and Level of Serv	vice																
Approach				EB		Т	١	WB			NB				SI	3	
Lane			Left	Right	Bypass	Left	t R	ight l	Bypass	Left	Righ	nt	Bypass	Left	Rig	ht	Bypas
Lane Control Delay (d), s/veh				5.3				5.5				\top		4.2	4.	1	
Lane LOS		\neg		А	А			A				\dagger		А	A		
95% Queue Length, Q ₅₅ (veh)				1.2				1.4				+		0.1	0.	1	
95% Queue Length, Q ₅₅ (ft)		\neg		30.5			3	5.0				\forall		2.5	2.	5	
Approach Delay, s/veh LOS		\dashv	5.	3		1 9	5.5		A			_		4			A

				HC	S Rour	ndabo	uts F	ер	οιτ								
General Information						Si	te Inf	orn	natior	1							
Analyst	DBZ								Inters	ection			Tr	revillia	in Way	at Zoc	Exit
Agency or Co.	Diane	B. Zimr	nermar	n Traffic			Ba.		E/W S	treet Na	me		Tr	revillia	in Way	/	
Date Performed	5/13/	2024					4	ackslash	N/S St	treet Nar	ne		Z	oo Exi	it		
Analysis Year	2024							M	Analy:	sis Time I	Period,	hrs	0.	.25			
Time Analyzed	AM P	eak				Stanzi			Peak H	Hour Fac	tor		0.	.83			
Project Description	Tenni:	Center				V 1			Jurisdi	iction							
Volume Adjustments	and S	ite Cl	narac	teristic	:s												
Approach		E	В			WB				N	В		\top		:	SB	
Movement	U	L	Т	R	U	L	т	R	U	L	Т	R	ı	u	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0
Lane Assignment				Т			Т		ı			R	Т				
Volume (V), veh/h	1		212	Т	0	2	53		0	2		1	Т	П			Т
Percent Heavy Vehicles, %	0		1		0		1		0	0		0	\top	\neg			
Flow Rate (vact), pc/h	1		258	\top	0	3	08		0	2		1	\top	\neg			\top
Right-Turn Bypass		N	one			None				No	ne		\top		N	one	
Conflicting Lanes			1			1				1			\top				
Pedestrians Crossing, p/h			0			0				0)		\top				
Proportion of CAVs, %									0								
Critical and Follow-U	n Hea	dway	Δdiı	ıstmen	+												
	T		:В			WB				N			_		_	SB	
Approach	Left	_	ght	Bypass	Left	Right	Вура		Left	Rig	_	Bypass		Left	_	ight	Bypass
	Leit	-	763	bypass	Leit	4.9763	Бур	555			\rightarrow	pypass		Leit	+	gni	Бураз
Catalogue I Lagradian and a		4.9	/05														
Critical Headway, s		2.6	007				+		4.5436	_	\rightarrow		+		+	$\overline{}$	
Follow-Up Headway, s			087			2.6087			2.5352	_	\rightarrow						
	Capaci			Ratio	5					_	\rightarrow						
Follow-Up Headway, s	Capaci	ity an		Ratio	5					_	352					SB	
Follow-Up Headway, s	Capaci Left	ity an	d v/	Ratio:	S Left	2.6087	Вур	355		2 2.53	352 B	Bypass		Left	_	SB ight	Bypas
Follow-Up Headway, s Flow Computations, Approach	Ė	ity an	d v/c			2.6087 WB	Вура	ess	2.5352	2 2.53 N	B pht	Bypass	5	Left	_	_	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane	Ė	Ri 2	d v/c			2.6087 WB Right	Вура	955	2.5352 Left	2 2.53 N Rig	B ht	Bypass	s 1	Left	_	_	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h	Ė	Ri 2	d v/c B ght			2.6087 WB Right 308	Вура	ess	2.5352 Left 2	2 2.53 NI Rig	B B Int	Bypass	5 1	Left	Ri	_	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h	Ė	Ri Ri 2	d v/ 6 :B ght 59			2.6087 WB Right 308 305	Вура	955	2.5352 Left 2	2 2.53 NI Rig 1	B	Bypass	5	Left	Ri	ight	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h Circulating Flow (v ₂), pc/h	Ė	Ri 2	d v/d			2.6087 WB Right 308 305	Вура	955	2.5352 Left 2	2 2.53 NI Rig 1 1 25	B	Bypass	5	Left	Ri	ight	Bypas:
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h	Ė	Ri 2 2 2 13	d v/e B ght 59 56 0			2.6087 WB Right 308 305 3	Вур	955	2.5352 Left 2	N Rig	B	Bypass	5 1	Left	Ri	ight	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpos), pc/h	Ė	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/d B ght 59 56 0 59			2.6087 WB Right 308 305 3 311 1376	Вур	228	2.5352 Left 2 2	N Rig 1 1 25 0 1112	B	Bypass	5	Left	Ri	ight	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpoo), pc/h Capacity (cpoo), veh/h	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/d BB ght 59 56 0 59 880			2.6087 WB Right 308 305 3 311 1376 1362	Вур	95S	2.5352 Left 2 2 1122 1122	N Rig 1 1 25 0 1112	B	Bypass		Left	Ri	ight	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x)	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/d BB ght 59 56 0 59 880			2.6087 WB Right 308 305 3 311 1376 1362	Byp	ess	2.5352 Left 2 2 1122 1122	N Rig 1 1 25 0 1112	B		5 1	Left	Ri	ight	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (voo), pc/h Capacity (cpoo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Se	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/c B ght 59 56 0 59 880	Bypass	Left	2.6087 WB Right 308 305 3 311 1376 1362			2.5352 Left 2 2 1122 1122	N Rig 1 1 25 0 1112	B B B B B B B B B B B B B B B B B B B		ypass I	Left	Ri	ight	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/e EB 559 00 00 19	Bypass	Left	2.6087 WB Right 308 305 3 311 1376 1362 0.22	WB		2.5352 Left 2 1122 1122 0.00	Ni Rig 1 1 25 0 0 1112 0.0	B B B B B B B B B B B B B B B B B B B	nt By			Ri	ight 111 0 SB	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/e EB 559 00 00 19	EB Right	Left	2.6087 WB Right 308 305 3 311 1376 1362 0.22	WB		2.5352 Left 2 1122 1122 0.00	NI Rig 1 1 25 0 0 1112 112 0.00	B B B B B B B B B B B B B B B B B B B	nt By			Ri	ight 111 0 SB	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/e EB 559 00 00 19	EB Right 4.2	Left	2.6087 WB Right 308 305 3 311 1376 1362 0.22	WB Right		2.5352 Left 2 1122 1122 0.00	NI Rigg 1 1 25 0 0 1112 0.00 Left 3.2	852 B B B B B B B B B B B B B B B B B B B	nt By			Ri	ight 111 0 SB	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpee), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Se Approach Lane Lane Control Delay (d), s/veh Lane LOS	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/e EB 559 00 00 19	EB Right 4.2	Left	2.6087 WB Right 308 305 3 311 1376 1362 0.22	WB Right 4.5	t E	2.5352 Left 2 1122 1122 0.00	Ni Rig 1 1 25 0 0 1112 0.0 Left 3.2 A	B B B B B B B B B B B B B B B B B B B	nt B ₃			Ri	ight 111 0 SB	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS 95% Queue Length, Q25 (veh)	Left	Ri Ri 2 2 2 11 11 11 11 11 11 11 11 11 11 11	d v/d EB EB SS9 SS9 SS6 O O SS9 SS8 SS6 SS6 Left	EB Right 4.2 A 0.7	Left	2.6087 WB Right 308 305 3 311 1376 1362 0.22	WB Right 4.5 A 0.9 22.7.7	t E	2.5352 Left 2 2 1122 1122 0.00	NI Rig 1 1 25 0 0 1112 112 0.0 C	B B B B B B B B B B B B B B B B B B B	nt B ₃	r/pass		Ri	ight 111 0 SB	

				HC	S Roui	ndabo	outs	Rep	ort							
General Information						$\overline{}$			natior	,						
Analyst	DBZ								Inters	ection			Trevi	illian W	ay at Zoo	Exit
Agency or Co.	Diane	B. Zimr	merma	n Traffic		-			E/W S	treet Nar	me		Trevi	illian W	'ay	
Date Performed	6/6/2	024						1	N/S St	treet Nar	ne		Zoo	Exit		
Analysis Year	2027				4 I			١٢	Analys	sis Time I	Period, h	ırs	0.25			
Time Analyzed	AM P	eak No	Build		1	S Canal			Peak H	Hour Fact	tor		0.83			
Project Description	Tennis	Center	,			→ 1			Jurisdi	iction						
Volume Adjustments	and S	ite Cl	hara	cteristi	cs											
Approach	П		EB			WB				N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0
Lane Assignment				T			Т		ī	.	F					
Volume (V), veh/h	1		218	3	0	- 1	264		0	2		1		Т	\top	Т
Percent Heavy Vehicles, %	0		1		0		1		0	0		0				
Flow Rate (v=ct), pc/h	1		269	,	0		321		0	2		1		\top	\top	\top
Right-Turn Bypass		N	one			None				No	ne				None	
Conflicting Lanes			1			1				1		\neg				
Pedestrians Crossing, p/h			0			0				0	1					
Proportion of CAVs, %									0							
Critical and Follow-U	ln Hea	dway	Δdi	ustmai	.+											
	T		EB	ustillei		WB			Г	NI					SB	
Approach	Left	_	_	D	Left	Right			Left	Rig	_		Left			D
Lane	Lett	_	ight	Bypass	Lent	-		pass		+	-	lypass	Len	-	Right	Bypas
Critical Headway, s	-	-	763			4.9763	+		4.5436	+	_	-		+		
Follow-Up Headway, s		_	5087			2.6087			2.5352	2.53	52		_	_		
Flow Computations,	Capaci	ity an	id v/	c Ratio	5											
Approach			EB			WB				N	В				SB	
Lane	Left	Ri	ight	Bypass	Left	Right	Ву	pass	Left	Rig	ht E	lypass	Left	t	Right	Bypas
Entry Flow (v ₀), pc/h		2	66			321	\perp		2	1						
Entry Volume, veh/h		2	:63			318			2	1						
Circulating Flow (vc), pc/h			0			3				26	6				324	
Exiting Flow (vex), pc/h		2	66			324				0	1				0	
Capacity (cpos), pc/h		1:	380			1376	\top		1115	111	15					
Capacity (c), veh/h		1:	366			1362	\top		1115	111	15			\neg		
v/c Ratio (x)		0	.19			0.23			0.00	0.0	00					
Delay and Level of Se	ervice															
Approach				EB		Т	W	В			NB		T		SB	
Lane			Left	Righ	t Bypass	Left	Rig	ht	Bypass	Left	Right	Вура	ss	Left	Right	Bypas
Lane Control Delay (d), s/veh				4.2			4.0	\rightarrow		3.2	3.2		+			
Lane LOS				A			A	\rightarrow		A	А					
95% Queue Length, Q ₅₅ (veh)				0.7			0.9	\rightarrow		0.0	0.0					
				_	+	-	+	-	_		_	+	+			
95% Queue Length. Oss (ft)				17.6			22.	.7		0.0	0.0					
95% Queue Length, Q ₉₅ (ft) Approach Delay, s/veh LOS				17.6	Α	4.	_	_	A	0.0			+		\top	


				HC	S Rour	ndabo	outs	Rep	ort								
General Information						s	ite lı	nforr	natio	n							
Analyst	DBZ					J LA			Inters	ection			T	revillia	n Way	at Zoo	Ent
Agency or Co.	Diane	B. Zimr	nermar	Traffic		-			E/W S	Street Na	me		Т	revillia	n Way		
Date Performed	6/6/2	024			Γ/Λ			1.	N/S S	treet Na	me		Z	Zoo En	t		
Analysis Year	2027							1	Analy	sis Time	Period,	hrs	0).25			
Time Analyzed	AM P	eak Build	d		F/	Manuel			Peak	Hour Fac	tor		7).86			
Project Description	Tenni	Center				-	1		Juriso	diction							
Volume Adjustments	and S	ite Cl	narac	teristic	s												
Approach		E	EB			WB				N	В				S	В	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	Т	R	u	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	Т	0	0	1	0	1
Lane Assignment				Т			LT							L			R
Volume (V), veh/h	0		269	37	0	21	245					Т	\neg	0	41		34
Percent Heavy Vehicles, %	0		1	0	0	0	2							3	0		0
Flow Rate (v=ct), pc/h	0		316	43	0	24	291					T		0	48		40
Right-Turn Bypass		Non-Y	rielding			None				No	ne				No	ne	
Conflicting Lanes			1			1							\neg		-	1	
Pedestrians Crossing, p/h			0			0									()	
Proportion of CAVs, %									0								
Critical and Follow-U	n Hea	dway	Δdiı	ıstman	+												
Circical and Follow-C	Pilea	avvuy	Auju		•												
A			- D			3A/D			$\overline{}$		_		\neg			<u></u>	
Approach	1-6	_	EB	D	1-6	WB	T.		1 -6	N	_	D		4-1	_	В	D
Lane	Left	Ri	ght	Bypass	Left	Right	-	/pass	Left	_	_	Вура	_	Left	Rig	ght	Bypas
Lane Critical Headway, s	Left	Ri 4.9	ght)763	Bypass	Left	Right 4.976		/pass	Left	_	_	Вура	4	.5436	Rig 4.54	ght 436	Bypass
Lane Critical Headway, s Follow-Up Headway, s		Ri 4.9 2.6	ght 9763 6087			Right		/pass	Left	_	_	Вура	4		Rig	ght 436	Bypass
Lane Critical Headway, s		Ri 4.9 2.6	ght 9763 6087			Right 4.976		ypass	Left	_	_	Вура	4	.5436	Rig 4.54	ght 436	Bypass
Lane Critical Headway, s Follow-Up Headway, s		2.6	ght 9763 6087			Right 4.976		ypass	Left	_	pht	Вура	4	.5436	4.54 2.53	ght 436	Bypass
Lane Critical Headway, s Follow-Up Headway, s Flow Computations,		2.6 ity an	ght 9763 6087 ed v/c			Right 4.976 2.608	7	ypass	Left	Rig	jht B	Вура	2	.5436	4.54 2.53	9ht 436 352 B	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach	Capac	2.6 14.9 2.6 14.9 2.6 14.9	ght 1763 5087 6d v/c	: Ratio:	•	Right 4.976: 2.608: WB	7			Rig	jht B		2	.5436	Rig 4.54 2.53	9ht 436 352 B	
Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane	Capac	Ri 4.9 2.6 Ety an Et Ri 3	ght 1763 16087 160 176 160 176 176 176 176 176 176 176 176 176 176	Ratios Bypass	•	Right 4.976: 2.608: WB Right	7			Rig	jht B		2	.5436 .5352 Left	Rig 4.54 2.53 S Rig 4	ght 436 352 B	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h	Capac	Ri 4.9 2.6 ity an 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ght 9763 6087 6d v/c EB	Bypass 43	•	Right 4.976: 2.608: WB Right 315	7			Rig	B		2	.5436 .5352 Left 48	Rig 4.54 2.53 S Rig 4	ght 436 352 B ght 0 0	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h	Capac	Ri 4.9 2.6 Ri Ri 3 3	ght 9763 6087 ed v/c	Bypass 43	•	Right 4.9763 2.6083 WB Right 315	7			Rig N N Rig	B ght		2	.5436 .5352 Left 48	Rig 4.54 S Rig 4 4.31	ght 436 352 B ght 0 0	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h Circulating Flow (v ₁), pc/h	Capac	Ri 4.9 2.6 1	ght 1763 16087 160 1763 1763 1763 1763 1763 1763 1763 1763	Bypass 43	•	Right 4.976; 2.608; WB Right 315 309 0	3 7 P			Rig N Rig	B ght		ass	.5436 .5352 Left 48	Rig 4.54 S Rig 4 4.31	ght 436 352 B ght 0 0 15 4	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h	Capac	Ri 4.9 2.6 1ty an 8 3 3 3 3 3 12	ght 1763 16087 16087 16087 16087 1708 1708 1708 1708 1708 1708 1708 1	Bypass 43	•	Right 4.976: 2.608: WB Right 315 309 0 331	3 7 P			Rig N Rig	B ght		ass	.5436 .5352 Left 48	Rig 4.54 2.53 S Rig 4 4 31 2	ght 436 352 B ght 0 0 15 4	Bypas:
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vc), pc/h Exiting Flow (ve), pc/h Capacity (cpo), pc/h	Capac	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 9763 6087 6087 6087 608 6087 608 608 608 608 608 608 608 608 608 608	Bypass 43	•	Right 4.9763 2.608 WB Right 315 309 0 331 1380	3 7 E By			Rig N Rig	B ght		ass	.5436 .5352 Left 48 48	Rigid 4.5-1. S S Rigid 4 4 4 4 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	ght 436 352 B ght 0 0 15 4 666	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (veo), pc/h Capacity (cpoo), pc/h Capacity (cpoo), veh/h	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 16087 160 1763 176	Bypass 43	•	Right 4.9763 2.6087 WB Right 315 309 0 331 1380 1355	3 7 E By			Rig N Rig	B ght		ass	.5436 .5352 Left 48 48	Rigid 4.5-1. S S Rigid 4 4 4 4 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	B B B B B B B B B B B B B B B B B B B	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (c), veh/h Cyc Ratio (x)	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 16087 160 1763 176	Bypass 43	•	Right 4.9763 2.6087 WB Right 315 309 0 331 1380 1355	: By			Rig N Rig	B ght	Вура	ass	.5436 .5352 Left 48 48	Rigid 4.5-1. S S Rigid 4 4 4 4 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	B B B B B B B B B B B B B B B B B B B	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (cpo), pc/h V/c Ratio (X) Delay and Level of Se	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ght 1763 16087 160 1763 176	Bypass 43 43	Left	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	3 3 7 7 By	//pass		Rig N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48	Rigida 4.54	B B B B B B B B B B B B B B B B B B B	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (veo), pc/h Capacity (cpoo), pc/h Capacity (cpoo), pc/h V/c Ratio (x) Delay and Level of So	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ight 1763 1763 1763 1763 1763 1763 1764 17	Bypass 43 43	Left	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	7	//pass	Left	N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48 1066 1066 0.05	Rigidal	B B B B B B B B B B B B B B B B B B B	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ight 1763 1763 1763 1763 1763 1763 1764 17	Bypass 43 43 EB Right	Left	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	V Rie	/pass	Left	N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48 1066 0.05	Rigidal	B B B B B B B B B B B B B B B B B B B	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpe), pc/h Capacity (cpe), pc/h V/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ight 1763 1763 1763 1763 1763 1763 1764 17	Bypass 43 43 EB Right 5.0	Left Bypass	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	VV Rie 4	ypass VB ght	Left	N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48 1066 0.05	S Rig 4 4 4 31 10 10 10 10 10 10 10 10 10 10 10 10 10	B B B B B B B B B B B B B B B B B B B	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (vee), pc/h Capacity (cpoe), pc/h Capacity (cp. veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS 95% Queue Length, Qas (veh)	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ight 1763 1763 1763 1763 1763 1763 1764 17	EB Right 5.0	Left Bypass	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	W. Right 4	v/pass	Left	N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48 1066 0.05	Rigidal	B B B B B B B B B B B B B B B B B B B	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (veo), pc/h Capacity (cpoo), pc/h Capacity (cpoo), pc/h V/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS	Left	Ri 4.9 2.6 ity an E 3 3 3 12 12	ight 1763 1763 1763 1763 1763 1763 1764 17	EB Right 5.0 A 1.0 25.2	Left Bypass	Right 4.9763 2.6083 WB Right 315 309 0 331 1380 1355 0.23	V	ypass VB AA A 9 9	Left	N Rig	B B B B B B B B B B B B B B B B B B B	Вура	ass	.5436 .5352 Left 48 48 1066 0.05	Rigidal	B B B B B B B B B B B B B B B B B B B	Bypas

				HC	S Rour	ndabo	outs	кер	ort								
General Information						s	ite In	forn	nation	1							
Analyst	DBZ								Interse	ection			Trevi	illian '	Way a	t Zoo	Exit
Agency or Co.	Diane	B. Zimn	nermar	Traffic					E/W S	treet Na	me		Trevi	illian '	Way		
Date Performed	5/13/	2024				N		\backslash +	N/S St	treet Nar	ne		Zoo	Exit			
Analysis Year	2024					W			Analys	sis Time I	Period,	hrs	0.25				
Time Analyzed	PM Pe	ak				Bland			Peak H	Hour Fact	tor		0.95				
Project Description	Tennis	Center				▼ 1	1		Jurisdi	iction							
Volume Adjustments	and S	ite Ch	narac	teristic	:s												
Approach		E	В			WB				N	В				SB		
Movement	U	L	Т	R	U	L	т	R	U	L	Т	R	U	Т	.	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	1	0	1	0	T	0	0	0
Lane Assignment				T			Т		L	.		R			T		
Volume (V), veh/h	0		288	Τ	0	- 1	80		0	18		16		Т	T		Т
Percent Heavy Vehicles, %	0		2		0		2		0	0		0		Т	T		
Flow Rate (v=cr), pc/h	0		309		0	- 1	108		0	19		17		Т	\neg		Т
Right-Turn Bypass		No	ne			None				No	ne				Non	e	
Conflicting Lanes	\top		1			1				1							
Pedestrians Crossing, p/h			0			0				0							
Proportion of CAVs, %	$\overline{}$								0								
Critical and Follow-U	In Hea	dway	Δdiı	ıstmen	+												
	T		В			WB				N					SB		
Approach	Left	_	ght	Bypass	Left	Right	T p.	pass	Left	Rig	_	Bypass	Left	Т	Righ	_	Bypass
	Leit	_	763	bypass	Leit	-	-	hass	Leit	Nig	nt.	pypass	Leit	`	rigi	+	bypas
Cristani Hamburga a			/05						4 5 4 3 6	. 454	12e						
Critical Headway, s	+-	_	007			4.9763	-		4.5436	+	_			-		+	
Follow-Up Headway, s		2.6	087			2.6087	-		4.5436 2.5352	+	_			1		1	
	Capaci	2.6		Ratio	5		-			+	_						
Follow-Up Headway, s	Capaci	2.6 ity an		: Ratio:	5		-			+	352				SB		
Follow-Up Headway, s	Capaci Left	2.6 ity an	d v/c	: Ratio:	S Left	2.6087		pass		2.53	B B	Bypass	Left	t	SB Righ	_	Bypas
Follow-Up Headway, s Flow Computations, Approach	Ė	2.6 ity an E	d v/c			2.6087 WB		pass	2.5352	2 2.53 N	B ht	Bypass	Left	t		_	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane	Ė	2.6 ity an E Rig	d v/c			2.6087 WB		pass	2.5352 Left	2 2.53 NI Rig	B ht 7	Bypass	Left	t		_	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h	Ė	2.6 ity an E Rig	d v/c			2.6087 WB Right		pass	2.5352 Left 19	2 2.53 NI Rig	B B B B B B B B B B B B B B B B B B B	Bypass	Left	t		nt	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h	Ė	2.6 E Rig	d v/d			2.6087 WB Right 408		pass	2.5352 Left 19	2 2.53 NI Rig 17	B B hht 7 7 9	Bypass	Lefi	t	Righ	nt	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h Circulating Flow (v ₂), pc/h	Ė	2.6 ity an E Rig 3: 3:	d v/c B ght 09 03			2.6087 WB Right 408 400		pass	2.5352 Left 19	2 2.53 NI Rig 11 11 30	852 B ht 7	Bypass	Left	t	Righ 427	nt	Bypas
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h	Ė	2.6 E Rig 3.0 3.0 1.3	d v/c B ght 09 03 0			2.6087 WB Right 408 400 19		pass	2.5352 Left 19	2 2.53 NI Rig 11 30	B B B B B B B B B B B B B B B B B B B	Bypass	Left	t	Righ 427	nt	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpos), pc/h	Ė	2.6 Rig 33 33 13	d v/c B ght 09 03 0 26			2.6087 WB Right 408 400 19 427		pass	2.5352 Left 19 19	2 2.53 NI Rig 11 30	852 B hht 77 77 99	Bypass	Left	t	Righ 427	nt	Bypas:
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpoo), pc/h Capacity (cpoo), veh/h	Left	2.6 Rig 33 33 13	d v/c 88 ght 009 03 0 26 880			2.6087 WB Right 408 400 19 427 1354 1327		pass	2.5352 Left 19 19 1072	2 2.53 Ni Rig 11 11 30 0 101	852 B hht 77 77 99	Bypass	Left	t	Righ 427	nt	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x)	Left	2.6 Rig 33 33 13	d v/c 88 ght 009 03 0 26 880			2.6087 WB Right 408 400 19 427 1354 1327			2.5352 Left 19 19 1072	2 2.53 Ni Rig 11 11 30 0 101	852 B hht 77 77 99	Bypass	Left	t	427 0	nt	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (voo), pc/h Capacity (cpoo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Se	Left	2.6 Rig 33 33 13	d v/c 88 ght 009 03 0 26 880	Bypass	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	By	В	2.5352 Left 19 19 1072	2 2.53 Ni Rig 11 11 30 0 101	852 88 87 77 79 99 97 72 92			Left	427 0	nt	Bypass
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So	Left	2.6 Rig 33 33 13	d v/e B B 009 000 00 00 00 00 00 00 00 00 00 00 0	Bypass	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	By	B	2.5352 Left 19 19 1072 1072 0.02	NI Rig 11 11 30 0 0 100 100 0.0	NB				427 0	nt ,	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane	Left	2.6 Rig 33 33 13	d v/e B B 009 000 00 00 00 00 00 00 00 00 00 00 0	Bypass EB Right	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	By	B Bloth 4	2.5352 Left 19 19 1072 1072 0.02	NI Rig 11: 30 0 0 10: 10: 0.0	8 B B B B B B B B B B B B B B B B B B B				427 0	nt ,	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh	Left	2.6 Rig 33 33 13	d v/e B B 009 000 00 00 00 00 00 00 00 00 00 00 0	EB Right 4.5	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	W Rig	B H	2.5352 Left 19 19 1072 1072 0.02	NI Rigg 17 10 10 10 10 10 10 10 10 10 10 10 10 10	B B B B B B B B B B B B B B B B B B B				427 0	nt ,	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpee), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Se Approach Lane Lane Control Delay (d), s/veh Lane LOS	Left	2.6 Rig 33 33 13	d v/e B B 009 000 00 00 00 00 00 00 00 00 00 00 0	EB Right 4.5	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	WW Riggs	B III III III III III III III III III I	2.5352 Left 19 19 1072 1072 0.02	NI Rig 11 10 0.0 0.0 Left 3.5 A	B B B B B B B B B B B B B B B B B B B				427 0	nt ,	
Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS 95% Queue Length, Q25 (veh)	Left	2.6 Rig 33 33 13	d v/e B B 009 000 00 00 00 00 00 00 00 00 00 00 0	EB Right 4.5 A 0.9 22.9	Left	2.6087 WB Right 408 400 19 427 1354 1327 0.30	W Rig S. A 1. 33	B 4 4 3 3.0	2.5352 Left 19 19 1072 1072 0.02	NI Rig 11 30 0 0 100 100 100 100 100 100 100 1	NB Right 3.5 A 0.0 0.0 0.0				427 0	nt ,	

Page 23

				HC	S Rour	ıdabo	uts R	еp	ort								
General Information						Si	te Inf	orn	nation								
Analyst	DBZ						N.	П	Interse	ection			Tr	revillia	n Way	at Zoo	Exit
Agency or Co.	Diane	B. Zimr	mermar	Traffic		-	M.		E/W St	treet Na	me		Tr	revillia	n Way	,	
Date Performed	6/6/2	024			Γ/Z		400		N/S St	reet Na	ne		Z	oo Exi	t		
Analysis Year	2027							H	Analys	is Time	Period,	hrs	0.	.25			
Time Analyzed	PM Pe	ak No B	Build		-/	Manual			Peak H	lour Fac	tor		0.	.95			
Project Description	Tennis	Center	·			¥1			Jurisdi	iction							
Volume Adjustments	and S	ite Cl	narac	teristic	:s												
Approach		E	EB			WB		\neg		N	В		Т			5B	
Movement	U	L	Т	R	U	L ·	Т	:	U	L	Т	R	ı	ı T	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1 (,	0	1	0	1	-	-	0	0	0
Lane Assignment				Т			T		Ĺ	.		R	\top				
Volume (V), veh/h	0		297		0	31	92	\neg	0	19		16	Τ	П			Т
Percent Heavy Vehicles, %	0		2		0		2		0	0		0		\neg			
Flow Rate (vact), pc/h	0		319		0	4	21	\neg	0	20		17	\top	\neg			
Right-Turn Bypass		N	one			None				No	ne		\top		N	one	
Conflicting Lanes			1			1		\neg		1			\top				
Pedestrians Crossing, p/h			0			0				()		\top				
Proportion of CAVs, %								-									
Critical and Follow-U	p Hea	dwav	Adi	ıstmen	t												
errecar and ronow-o	Pilea	amay			•												
A	$\overline{}$		- D			1A/D		\neg					$\overline{}$			- D	
Approach	Loft	_	EB	Puppe	Loft	WB	Runa		l of	N		Dunner	I	l oft	_	SB	Pupar
Lane	Left	Ri	ght	Bypass	Left	Right	Вура	SS	Left	Rig	ht	Bypass		Left	_	ght	Bypass
Lane Critical Headway, s	Left	Ri 4.9	ght 9763	Bypass	Left	Right 4.9763	Вура	SS	4.5436	Rig 4.54	iht 136	Bypass		Left	_		Bypas
Lane Critical Headway, s Follow-Up Headway, s		Ri 4.9 2.6	ght 9763 6087			Right	Вура	SS		Rig 4.54	iht 136	Bypass		Left	_		Bypass
Lane Critical Headway, s		Ri 4.9 2.6	ght 9763 6087			Right 4.9763	Вура	ss	4.5436	Rig 4.54	136 352	Bypass		Left	Ri	ght	Bypas
Lane Critical Headway, s Follow-Up Headway, s		2.6	ght 9763 6087			Right 4.9763	Вура	ss	4.5436	Rig 4.54	136 352	Bypass		Left	Ri		Bypas:
Lane Critical Headway, s Follow-Up Headway, s Flow Computations,		2.6 ity an	ght 9763 6087			Right 4.9763 2.6087	Вура		4.5436	Rig 4.54	ht 136 352 B	Bypass		Left	Ri	ght	Bypas:
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach	Capaci	2.6 14.9 2.6 14.9 2.6 14.9	ght 1763 16087 1 d v/ 6	: Ratio:		Right 4.9763 2.6087 WB			4.5436 2.5352	Rig 6 4.54 2.53	136 1352 B				Ri	ght SB	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane	Capaci	Ri 4.9 2.6	9763 9763 9087 90 v/c EB	: Ratio:		Right 4.9763 2.6087 WB Right			4.5436 2.5352 Left	Rig 6 4.54 2.53 N	B B Inht 7				Ri	ght SB	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h	Capaci	Ri 4.9 2.6 ity an 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ght 0763 6087 ed v/e EB ght	: Ratio:		Right 4.9763 2.6087 WB Right 421			4.5436 2.5352 Left 20	Rig 6 4.54 2.53 N Rig	B B Inht 7				Ri	ght SB	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h	Capaci	Ri 4.9 2.6 Ri Ri 3 3	ght 0763 0087 0d v/0 EB ght 19	: Ratio:		Right 4.9763 2.6087 WB Right 421 413			4.5436 2.5352 Left 20	Rigi 4.54 N Rigi 1	B B Inht 7 7 9				Ri Ri	ght SB ght	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (v ₀), pc/h Entry Volume, veh/h Circulating Flow (v ₁), pc/h	Capaci	Ri 4.9 2.6 1	ght 1763 6087 60 60 60 60 60 60 60 60 60 60 60 60 60	: Ratio:		Right 4.9763 2.6087 WB Right 421 413 20			4.5436 2.5352 Left 20	Rig i 4.54 2.53 N Rig 1 1	B ht 7 7 9)				Ri Ri	ght SB ght 41	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h	Capaci	Ri 4.9 2.6 1ty an Ri 3 3 3 3 13	ght 1763 6087 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: Ratio:		Right 4.9763 2.6087 WB Right 421 413 20			4.5436 2.5352 Left 20 20	Rig i 4.54 2.53 N Rig 1 1 1 31	B B B B B B B B B B B B B B B B B B B				Ri Ri	ght SB ght 41	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (ve), pc/h Capacity (cpo), pc/h	Capaci	Ri 4.9 2.6 ity an E 3 3 3 13 13	ght 9763 8087 8 8 9 9 1 1 3 9 9 1 3 6 3 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	: Ratio:		Right 4.9763 2.6087 WB Right 421 413 20 441 1352			4.5436 2.5352 Left 20 20	Rig i 4.54 2.53 N Rig 1 1 1 31	B B Inht 7 7 9 9 0 62 62 652				Ri Ri	ght SB ght 41	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ves), pc/h Capacity (cpos), pc/h Capacity (cpos), veh/h	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 13 13	1763 1763 1763 1763 1763 1763 1763 1763	: Ratio:		Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326			4.5436 2.5352 Left 20 20 1062	Rigi 4.54 N Rigi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B B Inht 7 7 9 9 0 62 62 652				Ri Ri	ght SB ght 41	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (c), veh/h V/c Ratio (x)	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 13 13	1763 1763 1763 1763 1763 1763 1763 1763	: Ratio:		Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326			4.5436 2.5352 Left 20 20 1062	Rigi 4.54 N Rigi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B B Inht 7 7 9 9 0 62 62 652				Ri Ri	ght SB ght 41	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpo), pc/h Capacity (cpo), pc/h V/c Ratio (x) Delay and Level of Se	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 13 13	1763 1763 1763 1763 1763 1763 1763 1763	Bypass EB	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326	Вура	55	4.5436 2.5352 Left 20 20 1062	Rigi 4.54 N Rigi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B B B B B B B B B B B B B B B B B B B	Bypass			Ri Ri	ight 558 sight 411 0	
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ves), pc/h Capacity (cpos), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of Se Approach	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 13 13	ight 1763 17	Bypass EB	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326 0.31	Bypa	55	4.5436 2.5352 Left 20 20 1062 1062 0.02	Rigi 4.54 N Rigi 1 1 1 31 (0 10 0.6	B B B B B B B B B B B B B B B B B B B	Bypass		Left	Ri Ri	SB S	Вураз
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (vo), pc/h Entry Volume, veh/h Circulating Flow (vo), pc/h Exiting Flow (vo), pc/h Capacity (cpo), pc/h Capacity (c), veh/h v/c Ratio (x) Delay and Level of So Approach Lane	Capaci Left	Ri 4.9 2.6 ity an E 3 3 3 13 13	ight 1763 17	EB Right	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326 0.31	WB Right	55	4.5436 2.5352 Left 20 20 1062 1062 0.02	Rigi 4.54 2.53 N Rigi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B B B B B B B B B B B B B B B B B B B	Bypass		Left	Ri Ri	SB S	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (ve), pc/h Capacity (cpe), pc/h Capacity (cpe), pc/h V/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh	Capaci	Ri 4.9 2.6 ity an E 3 3 3 13 13	ight 1763 17	Bypass EB Right 4.6	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326 0.31	WB Right 5.5	55	4.5436 2.5352 Left 20 20 1062 1062 0.02	Rigi 4.54 2.53 N Rigi 1 1 1 31 (0 10 0.0	B B B B B B B B B B B B B B B B B B B	Bypass		Left	Ri Ri	SB S	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (veo), pc/h Capacity (cpo), pc/h Capacity (cpo), veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS	Capaci	Ri 4.9 2.6 ity an E 3 3 3 13 13	ight 1763 17	EB Right 4.6	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326 0.31	WB Right 5.5	55	4.5436 2.5352 Left 20 20 1062 1062 0.02	Rigi 4.54 2.53 N Rigi 1 1 1 31	B B B B B B B B B B B B B B B B B B B	Bypass		Left	Ri Ri	SB S	Bypas
Lane Critical Headway, s Follow-Up Headway, s Flow Computations, Approach Lane Entry Flow (ve), pc/h Entry Volume, veh/h Circulating Flow (ve), pc/h Exiting Flow (vee), pc/h Capacity (cpoe), pc/h Capacity (cp. veh/h v/c Ratio (x) Delay and Level of So Approach Lane Lane Control Delay (d), s/veh Lane LOS 95% Queue Length, Qas (veh)	Capaci	Ri 4.9 2.6 ity an E 3 3 3 13 13	ght 1763 16087 16087 1763 1	EB Right 4.6 A 0.9	Left	Right 4.9763 2.6087 WB Right 421 413 20 441 1352 1326 0.31	WB Right 5.5 A 1.3 33.0	55 E	4.5436 2.5352 Left 20 20 1062 1062 0.02	Rigi 4.54 N Rigi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NB Right 3.5 A 0.0 0.0	Bypass	pass	Left	Ri Ri	SB S	Bypas

				HC	S Rour	ndabo	uts F	lep	ort							
General Information						Si	te Inf	orn	natior	1						
Analyst	DBZ								Inters	ection		$\neg \tau$	Trevillia	an Way	at Zoo	Exit
Agency or Co.	Diane	B. Zimr	nermai	n Traffic		-	1	4	E/W S	treet Nar	me		Trevillia	an Way	,	
Date Performed	6/6/2	024			Γ/Λ			1	N/S St	treet Nar	ne	\neg	Zoo Ex	it		
Analysis Year	2027							Н	Analy:	sis Time I	Period, h	nrs	0.25			
Time Analyzed	PM Pe	ak Buil	1		-	Manual			Peak H	Hour Fact	tor	\neg	0.95			
Project Description	Tennis	Center				▼ 1			Jurisdi	iction						
Volume Adjustments	and S	ite Cl	narac	teristic	:s											
Approach			В			WB				N	В			S	SB.	
Movement	U	L	Т	R	U	L	т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	0
Lane Assignment				LT			T		ı	.	F	1				
Volume (V), veh/h	0	54	339	Т	0	3	92	55	0	19		16	\neg			Т
Percent Heavy Vehicles, %	0	0	2		0		2	0	0	0		0				
Flow Rate (v=ct), pc/h	0	57	364	\top	0	4	21 (58	0	20		17	\neg			\top
Right-Turn Bypass		N	one			Yielding				No	ne			No	one	_
Conflicting Lanes			1			1				1		\neg				
Pedestrians Crossing, p/h			0			0				0						
Proportion of CAVs, %								_)							
Critical and Follow-U	, Han	dway	Δdi	ıctman	.+											
	J I I Ca		B	astillei	T	WB		_		NI					В.	
Approach	Left	_		D	Left		D. uz		Left	_	_		Left	_	_	D
Lane	Leπ	_	ght	Bypass	Lett	Right	Вур	_		Rig	-	Bypass	Lett	RI	ght	Bypas
Critical Headway, s		+	763			4.9763	4.97	_	4.5436	_	_	_		+	\rightarrow	
Follow-Up Headway, s		_	087			2.6087	2.60	8/	2.5352	2.53	52					
Flow Computations, C	Capaci	ty an	d v/	Ratio	5			_								
Approach		-	В			WB				N	В			S	В	
Lane	Left	Ri	ght	Bypass	Left	Right	Вур	ess	Left	Rig	ht E	Bypass	Left	Rig	ght	Bypas
Entry Flow (ve), pc/h		4	21			421	68		20	17	7					
Entry Volume, veh/h		4	14			413	68		20	17	7			\top		
Circulating Flow (vc), pc/h			0			77				42	1			4	41	
Exiting Flow (vex), pc/h		3	81			441				57	7				0	
Capacity (cpoe), pc/h		1:	380			1276	130)2	968	96	8			Т	\neg	
Capacity (c), veh/h		1:	357			1251	130)2	968	96	8					
		0	.31			0.33	0.0	5	0.02	0.0	2					
v/c Ratio (x)														÷		
	rvice						WB				NB		T		SB	
Delay and Level of Se	rvice			EB			_	_	Bypass	Left	Dieba	P	10	eft I	Right	Вура
	rvice		Left	_	Bypass	Left	Righ	t E	Dypass I	Leit	Right	DAMP22	Le			
Delay and Level of Se Approach Lane	rvice		Left	Right	Bypass	Left	-	: E	-		-	Bypass	Le		· iigiii	
Delay and Level of Se Approach Lane Lane Control Delay (d), s/veh	rvice		Left	Right 5.3	: Bypass	Left	5.9		3.2	3.9	3.9	bypass	Le			
Delay and Level of Se Approach Lane Lane Control Delay (d), s/veh Lane LOS	rvice		Left	Right 5.3	Bypass	Left	5.9 A		3.2 A	3.9 A	3.9 A	Бураз	Le			
Approach Lane Lane Control Delay (d), s/veh Lane LOS 95% Queue Length, Q ₃₅ (veh)	rvice		Left	5.3 A 1.3		Left	5.9 A 1.5		3.2 A 0.2	3.9 A 0.1	3.9 A 0.1	Бураз	Le			
Delay and Level of Se Approach Lane Lane Control Delay (d), s/veh Lane LOS	rvice			Right 5.3		Left	5.9 A 1.5 38.1		3.2 A	3.9 A	3.9 A	A				

				HC	S Rou	nda	bout	ts Rep	oort								
General Information							Site	Infor	matio	n							
Analyst	DBZ					IJ	THE R		Inter	section			Ti	revillia	n Way	at Zoo	Ent
Agency or Co.	Diane	B. Zimn	nerman	Traffic					E/W	Street Na	me		Ti	revillia	n Way		
Date Performed	12/18/	/24						\setminus ,	N/S	Street Nar	me		Z	oo Ent			
Analysis Year	2027				$ \cdot $		D	↑ ▶	Anal	/sis Time	Period,	hrs	0	.25			
Time Analyzed	12:00	to 1:00	pm Sati	urday					Peak	Hour Fac	tor		0	.95			
Project Description	Tennis	Center					- 1		Juris	diction							
Volume Adjustments	and Si	ite Ch	arac	teristic	:s												
Approach		E	В			V	/B		$\overline{}$	N	В		\top		SI	3	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R		J T	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	0	0	1		1	0	1
Lane Assignment				Т				LT				_					R
Volume (V), veh/h	0		189	380	0	253	302	Т				Т		οТ	42		35
Percent Heavy Vehicles, %	0		1	0	0	0	1							3	0		0
Flow Rate (VPCE), pc/h	0		201	400		266	321			\vdash			+	-	44		37
Right-Turn Bypass	-	Non-Y	ielding	100	-		ne			No	na	_			No	na	1 2
Conflicting Lanes			1				1			140	iie .		+		1		
Pedestrians Crossing, p/h			0)		\vdash				+		0		
2.1.			0				,										
Proportion of CAVs, %						_			0							_	_
Critical and Follow-U	p Head	dway	Adju	stmen	t												
Approach		E	В			V	/B			N	В				SI	3	
Lane	Left	Rig	ght	Bypass	Left	Rig	ght	Bypass	Left	Rig	ht	Bypas	s	Left	Rig	ht	Bypas
Critical Headway, s		4.9	763			4.9	763			\neg	П		4.	5436	4.54	136	
Follow-Up Headway, s		2.6	087			2.6	087						2.	5352	2.53	52	
Flow Computations,	Capaci	ty an	d v/c	Ratio	5												
Approach		E	В			V	/B		Т	N	В		\top		Si	3	
Lane	Left	Rig	ght	Bypass	Left	Rig	ght	Bypass	Left	Rig	ht	Bypas	s	Left	Rig	ht	Bypas
Entry Flow (v _*), pc/h		2	01	400		58	37			\top	\neg		\top	44	3	,	
Entry Volume, veh/h		19	99	400		58	34				\neg		+	44	31	,	
Circulating Flow (v _c), pc/h		3	10							24	15		+		58	7	
Exiting Flow (v _{ex}), pc/h		2	45			35	58			0)		+		26	6	
Capacity (cpcs), pc/h		_	06			_	80							832	83	_	
Capacity (c), veh/h		+-	96			\vdash	73				\dashv		-	832	83	\rightarrow	
v/c Ratio (x)		-	20			-	43			+	\dashv		-	0.05	0.0	\rightarrow	
Delay and Level of Se	rvice	U.	20		L	1 0,	***						1,	v.v5	0.0	-	
Approach				EB		Т		WB			NE					SB	
Lane			Left	Right	Bypass	10	eft	Right	Bypass	Left	Rigi	_	ypass	Left	_	ight	Вура
		-		5.5	уразз	-	-	6.7	буразз	Len	, and		ypuss	4.8	_	4.7	Бурс
Lane Control Delay (d), s/veh				A A	A	+	+	A A				+		4.6 A	+	4.7 A	
				+			-	\rightarrow							+		
95% Queue Length, Q ₃₅ (veh)				0.7		+	-	2.2				+		0.2	+	0.1	
95% Queue Length, Q ₉₉ (ft)				17.6		-		55.0						5.0		2.5	
Approach Delay, s/veh LOS			1.8	B	A	\perp	6.7		A						1.8	\perp	A
Intersection Delay, s/veh LOS						4.3							-	4			

Diane B. Zimmerman Traffic Engineering, LLC.

				HC	S Ro	ında	abou	ıts Re	po	ort							
General Information							Site	e Info	rma	ation	,						
Analyst	DBZ					飅			T	Interse	ection		Τ.	Trevillia	n Way	at Zoo	Exit
Agency or Co.	Diane	B. Zimn	nermar	Traffic			-	1		E/W S	treet Na	me	<u> </u>	Trevillia	n Way		
Date Performed	12/18	/24						1		N/S St	treet Nar	ne		Zoo Exit			
Analysis Year	2027				KI			(1)		Analys	sis Time	Period, hr	s (0.25			
Time Analyzed	12:00	to 1:00	pm Sat	urday		٨.				Peak H	Hour Fac	tor		0.95			
Project Description	Tennis	Center	•				→ V 1 i		ľ	Jurisdi	iction						
Volume Adjustments	and S	ite Cl	narac	teristi	:s												
Approach		E	В				WB		Т		N	В	$\neg \top$		S	В	
Movement	U	L	Т	R	U	L	Т	R	\top	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	T	0	1	0	1	0	0	0	0
Lane Assignment				LT				T	†	L		R					
Volume (V), veh/h	0	39	192	\top	0		403	3 47	Ť	0	152	$\overline{}$	101	\neg			\top
Percent Heavy Vehicles, %	0	0	1		0		1	0	\dagger	0	0		0	\neg			
Flow Rate (VPCE), pc/h	0	41	204		0		428	3 49	Ť	0	160	\neg	106	\neg			\top
Right-Turn Bypass		No	one			Yie	elding		†		No	ne			No	ne	
Conflicting Lanes			1				1		Ť		1		\neg				
Pedestrians Crossing, p/h			0				0		†		0	1					
Proportion of CAVs, %									0								
Critical and Follow-U) Hea	dway	Adjı	ıstmen	ıt												
Approach		E	В				WB		Т		N	В	$\neg \tau$		S	В	
Lane	Left	Ri	ght	Bypass	Left	R	light	Bypas	:	Left	Rig	ht By	pass	Left	Rig	ght	Bypass
Critical Headway, s		4.9	763			4.	9763	4.9763	1	4.5436	4.54	136	\neg			\neg	
Follow-Up Headway, s		2.6	087			2.	6087	2.6087	,	2.5352	2.53	52					
Flow Computations, C	apaci	ty an	d v/c	Ratio	5												
Approach		-	В				WB		Т		N	В	Т		S	В	
Lane	Left	Ri	ght	Bypass	Left	R	ight	Bypas	:	Left	Rig	ht By	pass	Left	Rig	ght	Bypass
Entry Flow (v _*), pc/h		2	45			1	428	49	Ť	160	10	6	\neg			\neg	
Entry Volume, veh/h		2	43			1	424	49	†	160	10	6					
Circulating Flow (v _c), pc/h			0			-	201		Ť		24	.5	\neg		58	38	
Exiting Flow (v _{ex}), pc/h		3	10				588		†		4	1			(0	
Capacity (cpos), pc/h		13	880			T	124	1323	Ť	1136	113	36	\neg		П	Т	
Capacity (c), veh/h		13	369			1	113	1323	†	1136	113	36				\neg	
v/c Ratio (x)		0.	18			1	0.38	0.04	Ť	0.14	0.0	9	\neg			\neg	
Delay and Level of Se	rvice					Ė			Ė								
Approach		\neg		EB		Т		WB		\neg		NB		$\overline{}$		SB	
Lane			Left	Right	Вура	55	Left	Right	Ву	pass	Left	Right	Bypass	Left	:	Right	Bypass
Lane Control Delay (d), s/veh				4.1		\top		7.1	1	3.0	4.4	4.0					
Lane LOS				A		\top		Α		Α	Α	Α			\top		
95% Queue Length, Q ₅₅ (veh)				0.6				1.8	0	0.1	0.5	0.3					
				45.0	_	+									+		
95% Queue Length, Q ₅₅ (ft)				15.0				45.4	4	2.5	12.5	7.5					

5.4

Intersection Delay, s/veh | LOS

A